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Abstract. The volatile pool is built on top of the DynamicPool invariant curve
with additional features, including efficient re-pegging, dynamic haircut, and
arbitrage block protection. In the case of volatile assets, the external price oracle
is deemed to be vulnerable to manipulation. Therefore, we have introduced a
computationally efficient method for measuring market prices and an internal
oracle for our re-pegging system.

1 Volatile Pool Invariant Curve

We inherited the AMM through DyanmicPool which:∑
k∈T

Lkp
scale
k (rk −

α

rk
) = D (1)

, where pscalek is price scale to define the price of the token k. T denotes as
the total type of tokens in the system. Lk and rk are the liability and coverage
ratio of token k. With the configurable amplification factor, α, it formulates the
AMM invariant curve with the invariant term, D.

1.1 Determination of the Market Price of an Asset

There are two other defined prices for our implementation to update our AMM
pricescalek , which are internal price oracle, priceoraclek , and the defined market
price, pricelastk . Since our internal oracle is calculated from the defined market
price of a token, we need to accurately calculate the swapping amount between
the volatile asset and the numéraire, usually a stablecoin in a volatile pool. For
a volatile pool with three tokens, our AMM can be expressed as follows:
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, where we temporarily replace the notation of pscalek to pk.

1



When we swap asset x, Ax, to asset y, Ay, with an infinitely small amount, we
take a derivative with respect to Ax:
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, where dAz
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= 0 when we swap x to y. Thus, we have:
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This is the formula to calculate the market price of token x given the pricescale

of tokens x and y and their corresponding coverage ratio.

On the smart contract level, Curve Finance implements a small amount (dx) to
determine the last recorded price, pricelast. In contrast, our AMM algorithm
enables precise calculation of the spot price, eliminating counting errors and
computational inefficiencies.

1.2 Uniformity of Spot Price

Another difference between Curve and our AMM algorithm lies in the computa-
tion of balances during the swapping process. Curve considers the token balance
of z when swapping x to y. Meanwhile, with Wombat, we isolate the balance
of the remaining tokens, enabling true scalability.

However, some may be concerned about the uniformity of spot price across
tokens, particularly when traders gain advantages by routing through another
token within the same pool. To address this concern, we show the uniformity
of spot price that the market price of swapping from x to y is equivalent to the
price of swapping x to z to y, plastx→y = plastx→z→y. Algebraically, we can show:

(−dAy
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) → ∆USDT

∆BTC

∆ETH

∆USDT
≡ ∆ETH

∆BTC
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Following the previous derivation and swap y to x and x to z, we have
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We can take the spot price between the volatile asset and the numéraire. i.e.
∆USDT

∆BTC
for the spot price of BTC.

2 Repegging Mechanism

2.1 Updating Internal Prices

We will have the following variables created for the re-pegging process.

1. pricelast: spot price to resemble the market spot price.

− dAnuméraire
dAvolatile asset

2. priceoracle: the exponential moving average (EMA) price oracle, where
αEMA determines the impact of the spot price, ti refers to the discrete
block-time when a swap executed and t1− t0 is the time duration between
swaps. TEMA is a configurable parameter that determines the sensitivity
of the EMA oracle. The initial price oracle at time 0 when launching the
system is equal to the price scale.

poraclet1 = pricelastt1 (1− αEMA) + αEMA(p
oracle
t0 )

αEMA = 2
− t1−t0

TEMA

3. pricescale: the price of token k identified in the AMM, where χ is a con-
figurable parameter that determines the re-pegging distance between the
new price scale and the price oracle.
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We can understand the process as re-pegging the LHS relative ratio,
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With re-arranagement, we can get a new price scale by:

pscalei,t+1 =

pscalei,t (

√∑
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(
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− 1)2

2.2 Repegging Conditions

For every swap, we check two re-pegging conditions which are 1) the sum of
relative deviation of price oracle and price scale of all tokens, and 2) the system
health with extra re-pegging fee, r∗, introduced at 2.2.1 and 2.2.3.

2.2.1 Relative Deviation of Price Oracle and Price Scale

We impose another condition on top of equation (3), and we only update the
price scale if √∑

(
poraclej,t

pscalej,t

− 1)2 > χ

This condition ensures no re-pegging occurs if the sum of relative distance of
all token between poraclej,t and pscalej,t is too low. We should not re-peg when the

poraclej = pscalej ∀ token j ∈ T .

2.2.2 Adjustment step Under Volatile Circumstance

To automate the re-pegging step under a volatile circumstance, we further im-
plement another automation that adjustment step = max{χ, normψ }, where

norm =

√∑
(
poracle
j,t

pscale
j,t

− 1)2 , χ is a configurable parameter as mentioned above

and ψ controls the extend of further facilitated step toward the price oracle.
When ψ is smaller, it allows the adjustment step to increase more significant. If
norm
ψ > χ, we will replace χ in equation (3) by this new value of adjustment step.

It means that when the sum of the price ratio for each token deviates signifi-
cantly, we will increase the size of adjustment step for more significant re-pegging
toward the oracle.

2.2.3 Maintaining Global Equilibrium and System Health

The price re-pegging process can effectively enhance liquidity efficiency and bal-
ance across tokens. Our single LP system allows us to simplify the re-pegging
process without convoluted computation. We allocate a configurable portion
of the swap fee (from volatile assets) earned by the system back to the token
assets. To ensure the system does not generate any spurious value during the
re-pegging process, we will re-peg only if the total value of assets of the pool
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with fee exceeds the total value of liabilities of the pool with their new corre-
sponding prices at the global equilibrium, i.e., r∗ ≥1. In other words, the system
will check the two re-pegging conditions in every swap. If they are fulfilled, the
system will allocate the fee into token assets and update the price scale.

In our dynamic pool whitepaper, Theorem 2 shows that the change in r∗ is
positively related to change in price when the coverage ratio of the token is
greater than r∗. However, when prices of more than 2 tokens change simul-
taneously, the impact on r∗ is unknown and it may not be viable to re-peg
automatically solely based on market prices.

Therefore, we reallocate a portion of the swap fee back into token assets to
facilitate the re-pegging process. We show that the addition of swap fee will
strictly increase the global equilibrium, r∗.

Recall the calculation of r∗ from the dynamic whitepaper r∗:

r∗ =
D +

√
D2 + 4α

∑
k∈τ Lkpk

2
∑
k∈τ Lkpk

(4)

We derive the impact of adding the swap fee to the asset for token i by taking
partial derivative with respect to Ai from equation (1):

∂D

∂Ai
= pi + α(

L2
i pi
A2
i

) > 0

The invariant, D, strictly increases with Ai and r* increases with D from equa-
tion (4). This allows us to use the swap fee to facilitate the re-pegging process
while ensuring that the global equilibrium remains greater than 1.

3 Dynamic Haircut

Fee(t) =Feebase + Feeσ

volatility︷ ︸︸ ︷
(

1

1 + ekv(βv−σ̄T,x,y)
+

1

1 + ekv2(βv2−σ̄T,x,y)
)

+ Feeimbalance ∗ (
Θe−θrx,t +Θe−θry,t

2
)︸ ︷︷ ︸

imbalance level)

, where ki, βi,Θ, θ are configurable parameters. σT represents the average price
volatility of the token pair at the last T time. β determines the required mag-
nitude of σ̄T,x,y to have an impact on Fee. kv determines the pace of impact of
σ̄T,x,y on Fee. Feeσ represents the dynamic fee based on volatility. rx,t and ry,t
are the coverage ratio of swapping pair x and y respectively.
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We also implement a dynamic fee based on the pool balance calculated from
the post-swap coverage ratio. For an asset-liability model, we are less concerned
about situations when the asset exceeds liability, but we should increase the fee
when the token is in high demand. Therefore, we introduce a single-tail im-
balance dynamic fee with an adjustable exponential function to address such
situations. This minimizes the fee’s impact when the coverage ratio exceeds 1
and encourages users to swap away the low-demand token.

The decrease in asset balances signifies the market’s demand and reflects price
movement. Introducing the Feeimbalance adaptively increases the reward for the
supply side and mitigates the impermanent loss if the coverage ratio does not
return to equilibrium.

The rationale behind the dynamic fee can be traced back to the paper on Loss-
Versus-Rebalancing (Milionis et al., 2023). LP profit depends on the fee relative
to the price volatility. LP losses are more significant when there is higher in-
stantaneous volatility. Consequently, arbitrageurs trade more aggressively in
response to price movements. Wombat dynamic fee is designed to address such
circumstances automatically.

3.1 Measure of Volatility

We first evaluate the continuous returns of a token as follows:

r̄i = ln(
pricelastt1

pricelastt0

)
1

τi
(5)

, where i refers to each discrete block-time and τi = t1 − t0 which represents

the lasting time between swap i at t1 and swap i-1 at t0. ln(
pricelast

t1

pricelast
t0

) is the

continuous returns between block-time t1 and t0 by second, and we take the
average with τi to obtain the average continuous returns r̄i,t.

With the additive nature of single-period returns, we can use the arithmetic
average to compute the standard deviation over a period of time. It signif-
icantly saves computation costs on the smart contract implementation level.
The average volatility of the swapping pair x and y is:

σ̄T,x,y =

√
1
T

∑
i(r̄i,x · τi,x − µx)2 +

√
1
T

∑
i(r̄i,y · τi,y − µy)2

2
(6)

, T = 86400, indicating the past 24 hours and

µ =
1

T

∑
i

(r̄i · τi) (7)
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4 Arbitrage Block

4.1 Oracle Manipulation Prevention

On the smart contract level, we prevent a situation where we excessively update
the priceoracle. We enforce a condition that updates the priceoracle only if the
last recorded block time is earlier than the current block time, as expressed by
price last timestamp < block.timestamp. As such, we update the priceoracle

only once per block, minimizing the risk of oracle manipulation.

In addition to the oracle update restriction by block, we also limit the im-
pact of spot price on the oracle. Regardless of the motive, any potential attack
can only manipulate the internal oracle price through a large trading volume
affecting the spot price. To prevent this and for the smooth operation of the
internal oracle, we cap the impact of price last to be 100% of the price scale.
Therefore, our EMA formula becomes:

priceoraclet =

{
(min{plast, 2∗pscale}) · (1− αEMA) + poraclet−1 · αEMA if plast > pscale

(max{plast, 12 ∗ pscale}) · (1− αEMA) + poraclet−1 · αEMA, otherwise

4.2 Deposit and Withdrawal Block

We are aware of one of the re-pegging conditions is based on the global equilib-
rium, and swapping x to y can cause re-pegging for z. This may increase the
coverage ratio of token z due to the increase of the asset by fee, creating an
arbitrage opportunity through deposit gains and withdrawal penalties. We en-
courage arbitrageurs to proactively trigger the re-pegging process by swapping
volume, contributing fees, and re-balancing liquidity. However, It’s worth noting
that arbitrageur may attempt to predict the re-pegging process and sandwich a
swap with deposit and withdrawal.

To prevent such situations, on implementation level, we limit

1. The re-pegging process occurs only once per block

2. Actions involving both deposit and withdrawal from the same address
cannot be executed within the same block.

These measures further avoid the possibility of the sandwich attack and elimi-
nate the risk-free arbitrage opportunity.

4.3 Withdrawal Stability

Our current withdrawal penalty and deposit gain aim to preserve the global
equilibrium coverage ratio, r∗, ensuring that withdrawal and deposit actions do
not adversely affect the system’s health. However, we recognize the potential
concern of ‘panic withdrawal,’ where the first person to withdraw may pay less
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withdrawal penalty while causing the coverage ratio to decrease. The current
mechanism works well with arbitrageurs, as it automates the price within stable
and liquid staking pairs and rebalances the coverage ratio to its state before the
withdrawal.

However, given the nature of volatile assets, the pool’s composition can be
skewed more than a dynamic and stable pool. As a precautionary measure, we
introduce a withdrawal mechanism, where after surpassing a certain threshold
of coverage ratio, users will partially withdraw in another token, selecting the
token pair that offers the best slippage in the pool. Since the withdrawal of
another token is irreversible with an imbalance swap fee and slippage, a user
cannot reverse a swap by immediately swapping back the second token to their
original withdrawal token without incurring a slight slippage loss. Therefore,
we can maintain the coverage ratio of the withdrawing token while ensuring the
late withdrawers do not incur higher impermanent losses. We find the required
amount of this withdrawal mechanism by:

We find the required amount of this withdrawal mechanism by:

ry,t−1 = ry,t

Ay
Ly

=
Ay −Wyδy +∆y

Ly −Wy

Ay
Ly

− Ay −Wyδy
Ly −W

=
∆y

Ly −Wy

ry,t−1 − r′y,t−1 =
∆y

Ly −Wy

(ry,t−1 − r′y,t−1) · (Ly −Wy) = ∆y

∆rwithdrawal ·∆Lwithdrawal = ∆y

, where ∆y is the amount we require to withdraw in another asset to maintain
the coverage ratio after withdrawal. r′y,t−1 is the coverage ratio after withdrawal
without withdrawing in another assets. W is defined as total liability deducted
from withdrawal, andWδ is the total withdrawal amount of token in asset where
(1− δ) can be understood as withdrawal penalty.

Based on ∆y and market condition, we aim to smooth the system by par-
tially withdrawing ∆y in another asset and the final withdraw amount ∆y′ is
calculated as:

∆y′ = min{ω, 1}∆y,where ω = Ke−κ·ry

, where ω is capped at 1. K and κ are the parameters that determine the amount
we partially withdraw in another asset from ∆y. When ω = 1, we withdraw the
exact amount in another asset to maintain the coverage ratio of the withdrawing
token. When ω < 1, We partially withdraw a smaller fraction, mitigating
the impact of withdrawal on the coverage ratio. This mechanism resembles a
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conventional AMM, where you eventually hold different tokens, most of which
have a lower value. However, under this mechanism, as a precautionary measure,
we help realize the impermanent loss at a market price upon withdrawal, which
is typically better than the early stale price.

5 Empirical Study

We have extracted hourly historical data covering the period from 1st May 2021
to 2022. The lowest and highest prices of BTC and ETH are {29154; 68640}
and {1718; 4849} respectively (see Appendix B). The primary objective of this
empirical simulation is to subject our volatile pool design to rigorous testing
under highly volatile conditions, effectively serving as a stress test.

Using historical data can guide an AMM to emulate the price behavior of a
centralized exchange without reliance on an external price oracle. To accom-
plish this, we have developed an arbitrage bot designed to adjust the internal
swap price by executing trades that offset the fractional difference between the
CEX price and the AMM’s internal price (see Appendix B).

The simulation aims to address the following key objectives:

1. To assess the behavior of the re-pegging mechanism and its corresponding
impact on impermanent loss.

2. To evaluate the Annual Percentage Yield (APY) generated by our dynamic
fee design.

3. To serve as a simulator for parameter setting within our governance com-
munity.
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5.1 Repegging Behavior and Impermanent Loss

The following simulated results resemble the settings where we start with 1,500,000
USDT and the equivalent value of BTC and ETH at the beginning of the volatile
pool. We can observe the change in impermanent loss based on targeted tokens
in our single-asset staking mechanism.

The figure above shows the re-pegging mechanism behavior and our internal
oracle under hourly price fluctuation settings1. It is important to note that in
Wombat’s single-staking design, re-pegging is primarily governed by the condi-
tion r∗ > 1. The re-pegging process aims to reallocate liquidity, concentrating
it more around the bonding curve. The price scale deviates from the price or-
acle. Still, the swapping price remains closely aligned with the market price,
influenced by the difference in coverage ratio and the corresponding deviated
price scale. We intentionally prioritize the system’s health over any liquidity
reallocation that might lead to a situation where the total system liability ex-
ceeds the total assets.

1Since our simulation is conducted with hourly price fluctuations, in a real-world setting
with highly frequent trading, we would incur more fees and the re-pegging process would
improve significantly. Intuitively, evidence can be shown when we simulated daily price fluc-
tuations, which resulted in approximately four times fewer fees compared to hourly price
fluctuations, but took twice as long for the re-pegging process.
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To interpret the benefit for our liquidity provider, we simulate the impermanent
loss for the stablecoin liquidity provider (stimulation code is also available for
BTC and ETH on Git Hub). For our single staking mechanism, it is intuitive to
have more incentive for volatile asset holders to stake in Wombat. In contrast,
it must have an attractive reward for stablecoin LP to be exposed to the price
fluctuation of volatile assets. We simulate the scenario where liquidity provides
a deposit of 20% of the total stablecoin liquidity, and we observe the imperma-
nent loss with fee across the entire period.

As observed from our simulation, even in the absence of close re-pegging between
price scale and price oracle, our volatile pool with the dynamic fee can effec-
tively mitigate the impermanent loss. In the long run, with a fee, the dynamic
fee will sufficiently cover the impermanent loss.

5.2 Impermanent Loss Comparison

To provide an essential insight into our competitiveness of the single-asset stak-
ing and re-pegging mechanism, we arbitrarily make our volatile pool design
similar to the Uniswap v2 settings in that we only impose two tokens in our
volatile pool without any swap fee.

We compare the impermanent loss between Uniswap v2 and our volatile pool
design. The rationale for comparing Uniswap v2 instead of Curve Tri-Crypto is
that the bonding curve of Curve Tri-Crypto is fundamentally close to the bond-
ing curve of v2 when their amplification factor is significantly large. Therefore,
we can compare through the tractable formula of Uniswap v2 of impermanent
loss and provide a value-adding insight for our users.
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We observe that the AMM algorithm shares a similar pattern of impermanent
loss with Uniswap, and the deviation between them is attributed to the peg-
ging mechanism. Although it is less effective without a dynamic fee, some price
compositions may allow r*¿1 and trigger re-pegging even without a fee.

As we observe from the historical data, the re-pegging mechanism could effec-
tively reduce impermanent loss, which provides a relatively lower impermanent
loss for some periods. Our dynamic fee mechanism, which pragmatically facil-
itates re-pegging, will effectively reduce impermanent loss better compared to
the standard benchmark of Uniswap v2 under asset equals to liability system.

5.3 Dynamic Fee and Real APY

Our dynamic fee design can be configured with different market circum-
stances to maximize our LP’s benefit under highly volatile situations while
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remaining competitive under normal circumstances. For our simulation, the
volatility, measured as in standard deviation of change in price, ranges between
0; 3.0. By setting Feebase = 0.0002, Fee{σ,U} = 0.002, Feeimbalance = 0.000125.
We show that our dynamic fee can incorporate circumstances with significant
price fluctuation.

In our sample period, when bitcoin drops from $57727 to $29154 (-49.49%),
and the coverage ratio of USDT drops to around 0.7067, the impermanent loss
is highest, and we are charging around 3.64% swap fee to protect our LP. In
contrast, when the percentage change in BTC price is within 20% and with
different volatility, the dynamic fee varies between 0.035% and 0.115% [See Ap-
pendix D].

If our wombat volatile pool were introduced during the sample period, we would
pragmatically generate at least 1.8%, 2.3%, and 6% APY for BTC, ETH, and
USDT, respectively. This is believed to be an underestimated APY because
our simulation is conducted under hourly price fluctuation, which significantly
lowers the price volatility and arbitrage opportunity compared to minutes- or
seconds-based trading.
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Appendix

A Cex Price of the Sample Period
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B Arbitrage Bot Behaviour

Appendix B shows that the arbitrage bot we designed has closely adjusted the
price of the BTC within our volatile pool.

C Fee Impact through Volatility

The purple line represents the dynamic fee charged, which corresponds to dif-
ferent factors such as coverage ratios and price volatility.
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